
S.O. Alharbi.et.al Int. Journal of Engineering Research and Applications             ww.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 5) April 2016, pp.42-48 

 
www.ijera.com                                                                                                                                 42|P a g e  

 

 

 

Analytic Solutions to the Darcy-Lapwood-Brinkman Equation 

with Variable Permeability 
 

S.O. Alharbi
1
, T.L. Alderson

2
, M.H. Hamdan

3
 

1
(Department Of Mathematical Sciences, University Of New Brunswick, Saint John, N.B., Canada, E2L 4L5 On 

Leave From Majmaah University, Kingdom Of Saudi Arabia.) 
2,3

 (Department Of Mathematical Sciences, University Of New Brunswick, Saint John, N.B., Canada, E2L 4L5) 

 

ABSTRACT 
Three exact solutions to the Darcy-Lapwood-Brinkman equation with variable permeability are obtained in this 

work. Solutions are obtained for a given vorticity distribution, taken as a function of the streamfunction. 

Classification of the flow field is provided and comparison is made with the solutions obtained when 

permeability is constant. Interdependence of Reynolds number and variable permeability is emphasized. 
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I. INTRODUCTION 
Flow through variable permeability porous 

media finds applications in oil and gas recovery, 

industrial and biomechanical processes and in 

natural environmental settings and agriculture, [1]. 

Naturally occurring media are of variable porosity 

and permeability, and the flow through which is 

governed by flow models with permeability tensor, 

[1], [2]. In some idealization of heterogeneous and 

inhomogeneous media, and in two-dimensional flow 

simulations, the permeability can be taken as a 

variable function of one or two independent 

variables [2]. A number of studies have implemented 

this approach (cf. [2], [3], [4], and the references 

therein). Variable permeability simulation has also 

proved to be indispensable in the study of the 

transition layer, [4], (defined here as a thin layer that 

is sandwiched between a constant permeability 

porous layer and a free-space channel, and the flow 

through which is governed by Brinkman’s equation). 

Models of flow through porous media come 

in a variety of forms depending on whether viscous 

shear effects and inertial effects are important. In the 

presence of solid boundaries, shear effects are 

important and it has been customary to use 

Brinkman’s equation to model the flow, [1]. When, 

in addition, inertial effects are important one resorts 

to the Darcy-Lapwood-Brinkman (DLB) equation 

(discussed in the current work), which takes into 

account macroscopic inertial effects and viscous 

shear effects. If micro-inertial effects are important, 

one resorts to a Forchheimer-type inertial model, [1]. 

The DLB equation, discussed in section 2 

of this work, resembles the Navier-Stokes equations, 

and involves a viscous damping (Darcy-like) term. 

Not unlike the Navier-Stokes equations, exact 

solutions are rare due to the nonlinearity of the 

equations and the inapplicability of the superposition  

 

Principle to nonlinear partial differential 

equations, (cf. [5], [6], [7], [8], [9], [10]). Taylor 

[11] identified the source of nonlinearity as the 

convective inertial terms, which vanish in two-

dimensional flows when the vorticity of the flow is a 

function of the streamfunction of the flow.  

By taking the vorticity to be proportional to 

the streamfunction of the flow, Taylor’s solution 

[11] represents a double infinite array of vortices 

decaying exponentially with time. Kovasznay, [12], 

extended Taylor’s approach and linearised the 

Navier–Stokes equations by taking the vorticity to 

be proportional to the streamfunction perturbed by a 

uniform stream. Kovasznay’s two-dimensional 

solution represents the flow behind (downstream of) 

a two-dimensional grid. Two solutions representing 

the reverse flow over a flat plate with suction and 

blowing were obtained by Lin and Tobak [13], who 

extended Kovasznay’s approach. Various other 

authors have obtained exact solutions to the Navier–

Stokes and other equations for special types of flow 

(cf. [14], [15], [16], and the reviews in [9], and [10]).  

  Most methods used in linearizing the 

Navier-Stokes equations have been used in the 

analysis of the DLB equation with constant 

permeability. The case of variable permeability is 

treated in this work, where we consider two-

dimensional flow through a porous medium 

governed by a variable-permeability DLB equation 

and find three analytic solutions for a prescribed 

permeability function of one space variable, when 

the vorticity of the flow is a function of the 

streamfunction of the flow. We take the variable 

permeability to be a function of position and a 

function of Reynolds number, since in the case of 

flow with constant permeability, Reynolds number 

and permeability are interdependent. The current 

study may prove to be of importance in stability 
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studies of flow through variable permeability 

periodic porous structures and in the study of flows 

that deviate from base flows in porous structures. 

 

II. GOVERNING EQUATIONS 
The steady flow of an incompressible fluid 

through a porous medium composed of a mush zone 

is governed by the equations of continuity and 

momentum, written respectively as, [1] 

0 v


                                                                                                                                        

              …(1) 
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where v


is the velocity vector field, p  is 

the pressure,  is the fluid density,  is the 

viscosity of the base fluid, *
 is the effective 

viscosity of the fluid as it occupies the porous 

medium, k is the permeability (considered here a 

scalar function of position),   is the gradient 

operator and 2
  is the laplacian. In the absence of 

definite information about the relationship between 
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*

 in this work. 
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where L is a characteristic length and U a 

characteristic velocity, equation (1) then takes the 

following dimensionless form after dropping the 

asterisk (*): 

0
yx

vu                                                                                                                                                          

…(4) 

And momentum equations (2) are 

expressed in the following dimensionless form: 

k

u
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2
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…(5) 
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...(6) 

where 


UL
Re  is the Reynolds number. 

System (4), (5), and (6) can be conveniently written 

in streamfunction-vorticity form as follows. 

Equation (4) implies the existence of a 

dimensionless streamfunction ),( yx such that 

y
u




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and 

x
v







.                                                                                                                                                          

…(8) 

Dimensionless vorticity,  , in two dimensions is 

defined as: 

.
yx

uvv 
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                                                                                                                             

...(9) 

Using (7) and (8) in (9), we obtain the 

streamfunction equation  

.
2
 

yyxx
              ...(10) 

Vorticity equation is obtained from equations (5) 

and (6) by eliminating the pressure term through 

differentiation, and can be written in the following 

equivalent forms 
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III. SOLUTION METHODOLOGY 
In order to solve equations (10) and (11 (or 

(12)) for   and  , we assume vorticity to be a 

function of the streamfunction defined by 




 
Re

y
                                                                                                                                                  

…(13) 

Where  is a parameter to be determined. 

Since equations (10) and (11) or (12) represent two 

equations in the two unknowns   and  , we must 

assume the form of the permeability function, 

).,( yxk  In the current work, we assume k  to be a 

function of x only or a function of y only. Since the 

vorticity in (13) involves y explicitly, we will 

assume that  

x
xkk

Re
)(


 .                                                                                                                                             

…(14) 

Equation (14) is based on the assumption 

that the model equations (Darcy-Lapwood-Brinkman 

equation (2)) is valid when inertial effects are 

significant, hence 0Re  . It is clear that when 

permeability increases, the flow is faster, and Re 

increases, and conversely. This choice of 

permeability function is characteristic of flow in a 

porous domain where permeability decreases 

downstream as x increases. We also assume here that 



S.O. Alharbi.et.al Int. Journal of Engineering Research and Applications             ww.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 5) April 2016, pp.42-48 

 
www.ijera.com                                                                                                                                 44|P a g e  

 is a permeability-adjustment parameter in the 

sense that it is a parameter that depends on the local 

value of permeability along a given line 

x constant. 

If 0Re  , then the Darcy-Lapwood-

Brinkman model, equation (2), reduces to the 

inertia-free Brinkman’s equation, which warrants 

different choice of permeability function.  

Now, substituting (13) and (14) in (11), and 

simplifying, we obtain 

y
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 Equation (15) has the integration factor given by 
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and solution given by 
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Where )( yf is an arbitrary function of y . 

Using (10), (13) and (17), we obtain the following 

equation that must be satisfied by )( yf  

0)(]}ReRe2[
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Equating coefficients of x to power, we obtain: 
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Equations (19) and (20) yield 0)( yf  when 

0 and 0Re  . Using 0)( yf in (17) gives 

Re

y
 , with horizontal streamlines  constant, 

and velocity components 0v , and 
Re

1
u which 

is a decreasing horizontal velocity with increasing 

Reynolds number. 

If 0)( yf , then by letting 

22

26

2
)1Re(

Re

1Re 














                                                                                                                     

…(22) 

equation (21) takes the form 

0)()(  yfyf  .                                                                                                                                          

…(23) 

Auxiliary equation of (23) is: 

0
2
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with characteristic roots 
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Three cases arise depending on the value of  : 

Case 1: 0  

Solution to (23) takes the form 
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where 
1

c and 
2

c  are arbitrary constants. The 

streamfunction, solution (17) thus becomes 
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with velocity components given by 
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and Vorticity takes the form 
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Case 2: 0  

If 0 , then equation (26) is replaced by 

yccyf
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The streamfunction, solution (27) is thus replaced by 
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with velocity components given by 
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and Vorticity takes the form 

]

1Re

)Re2/(
exp[][

Re
2

22

21














xx
ycc

y

.                                                                               

…(35) 

Case 3: 0  

In this case, the characteristic roots in equation (25) 

are of the form 

im                                                                                                                                                         

…(36) 

and equation (26) is replaced by 
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The streamfunction, solution (27) is thus replaced by 
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with velocity components given by 
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and Vorticity takes the form 
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IV. SUB-CLASSIFICATION OF FLOW 
IV.1. Determining the value of   

Equation (14) gives the variable 

permeability as a function of x  and shows its 

dependence on parameter  and on Reynolds 

number. For choices of and Re , the value of 

dimensionless variability must be such that 

1)(0  xk . This implies that 0 . The value of 

  also affects the value of  , as given in its 

definition in equation (22) which also shows the 

influence of Re on  . Reynolds number must be 

greater than zero so that the permeability takes a 

positive value. 

Equation (14) ties in together the values of 

permeability function at different values of x , and 

the values of parameter  for a given permeability 

value. We emphasize here that in obtaining the 

solutions discussed in this work, we assumed 

that 0Re   and 0x  so that the permeability has a 

positive numerical value, hence 0 . A minimum 

value of  is chosen so that the dimensionless 

permeability does not exceed 1. In what follows we 

will show that   must be greater than unity. 

 

Limiting cases on the flow are as follows: 

When 0Re  , equation (22) shows that 

 2 , and equation (14) shows that 0k . This 

represents the limiting case for an impermeable 

solid. 

Another limiting case is obtained when Re is large 

( 1Re  ), equation (22) shows that
2

  . 

If 0  then 0
2
  , or 0  or 1 . 

If ,0 then 0  and the fluid is inviscid (which 

is not the case in the current flow problem). If 1 , 

we run into problems determining values of 

Reynolds number, as discussed in what follows. 

The cases of 0 , 0 , and 0 : 

When 0 , equation (22) reduces to: 

02Re3Re)(
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  .                                                                                                                      

…(42) 

If 1 then Re is negative. A positive Re  is 

therefore obtained when 0  and 0  and 

1 . Solution to equation (42) in terms of   is 

given by: 
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
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Where we choose the sign of root that 

renders a positive value for Re , for a given 

0 1 . This value of Re , for the choice of   

represents the critical value that makes 0 . 

When 0 equation () reduces to: 

02Re3Re)(
22232

                                                                                                                     

…(44) 

and we must have 1 in order to have a positive 

Reynolds number, given in terms of   as: 
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 .                                                                                                                                            

…(45) 

A choice of positive Re that is less than or equal to 

the value calculated using equation (45) guarantees 

that 0 . 

When 0 equation (42) reduces to: 

02Re3Re)(
22232

  .                                                                                                                  

…(46) 

and we must have 10    in order to have a 

positive Reynolds number, given in terms of   as: 
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a




 .                                                                                                                                            

…(47) 

A choice of Re greater or equal to the value 

calculated using equation (47) guarantees that 

0 . 
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IV.2. Stagnation 

The flow described by equations (27)-(30), 

(32)-(35) and (38)-(41) can be sub-classified 

according to the values of the arbitrary 

constants
1

c and
2

c . In particular when 

0 vu stagnation points in the flow occur.  

Case 1: 0  

Setting 0 vu  in (28) and (29) gives the 

following values of ),( yx  at stagnation: 
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In order to have a positive argument of the 

natural logarithmic function, we must choose 

0
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c . The value of 

2
c  must be chosen such that 
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We note that permeability to the fluid along the 

vertical lines (48) is given by 



 1Re
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…(51) 

When
12

cc  , solutions represent a 

reversing flow over a flat plate (situated to the right 

of the y-axis) with suction ( 0
Re


y

 ) or blowing 

( 0
Re


y

 ). For non-negative 
1

c , suction occurs, 

and when 0
1
c blowing occurs. When 

21
cc  , the 

flow is non-reversing with suction if 0
2
c  or 

blowing if 0
2
c . 

 

Case 2: 0  

Equations (33) and (34) give the following 

stagnation points: 

2

1

c

c
y                                                                                                                                                            

…(52) 

)
Re

1
ln(

)1Re(2
ReRe

2

2

22

c
x 







   .                                                                                             

…(53)   

For )
Re

1
ln(

2
c

 to be defined, we much have 

0
2
c . In addition, we much have 

0)
Re

1
ln(

)1Re(2
Re

2

2

22





c


                                                                                                              

…(54) 

Which is guaranteed by choosing 0
2
c  

such that 

]

)1Re(2

Re
exp[.Re

1

2

232








c .                                                                                                                          

…(55) 

In order to have a positive value for 

permeability, we must have 0x . Values of the 

parameters in (53) must be chosen to 

guarantee 0x . 

These solutions represent flow over a porous flat 

plate with suction or blowing. 

Case 3: 0  

Setting 0u and 0v in equations (39) and (40) 

results in 

]Re))[ln(/1Re(ReRe
2242

  x                                                                                              

…(56) 





1
tan

1 
y                                                                                                                                             

…(57) 

where  

2

1

c

c
                                                                                                                                                              

…(58) 

and 

2
21

1

)(








 cc .                                                                                                                                    

…(59) 

It is clear that 
21

, cc ; however the 

parameters in (56) must be chosen such that 0x  so 

that permeability is positive. The obtained solution 

represents a flow field consisting of alternating 

vortices that are superposed on the main flow, 

perpendicular to their planes. 

 

IV.3. Comparison with Constant Permeability 

Solutions 

When the permeability is constant in the 

DLB equation, the following three exact solutions 

for the streamfunction have been obtained by 

Merabet et al. [17]. In both cases of constant or 
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variable permeability, Reynolds number is 

connected to permeability. However,   is defined 

differently and its range is different in both flow 

types, while 1  for constant permeability flow.  

][   Ry                                                                                                                                                  

…(60) 
2

2

11
1










kR

                                                                                                                                        

…(61) 

Re

1
R ; 1 .                                                                                                                                               

…(62) 

Case 1: 10    























 










 
























 










 


2

2

2

2

2

1

11
exp

11
exp

k

k
R

R

y

k

k

R

x
c

k

k
R

R

y

k

k

R

x
cRy

                          …(63) 

k

k

R 


1

1
Re .                                                                                                                                               

…(64) 

Case 2: 0  

















 


k

k

R

x
yddRy

1
exp)(

21
                                                                                                                

…(65) 

k

k

R 


1

1
Re .                                                                                                                                               

…(66) 

Case 3: 0  








































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



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



























 



















 


2

2

2

2

2

1

1
sin

1
cos

1
exp R

k

k

R

y
eR

k

k

R

y
e

k

k

R

x
Ry                                  

…(67) 

k

k

R 


1

1
Re .                                                                                                                                               

…(68) 

 

V. CONCLUSION 
In this work we have obtained three exact 

solutions to the Darcy-Lapwood-Brinkman equation 

with variable permeability. Permeability has been 

defined as a function of one space dimension, and 

vorticity is prescribed as a function of the 

streamfunction of the flow. Ranges of parameters 

have been determined, and comparison is made with 

the solutions obtained for the constant permeability 

case. Solutions obtained represent fields of flow over 

a flat plate with blowing or suction. 
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